

The Guide to Self-Reference

☺

Hi everybody!

Self-reference proofs can be
pretty hard to understand the

first time you see them.

If you're confused – that's okay!
It's totally normal. This stuff is

tricky.

Once you get a better sense for
how to structure these proofs,

I think you'll find that they're not
as bad as they initially seem.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

This lecture slide was the first time
 that we really saw self-reference,
and a lot of you got pretty tripped

up by what was going on.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Part of the reason why this can be
tricky is that what you're looking at
is a finished product. If you don't

have a sense of where it comes from,
it's really hard to understand!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Let's see where it comes from!

We'll take it from the top.

Let's try to use self-reference
to prove that ATM is undecidable.

At a high level, we're going to do
a proof by contradiction.

ATM ∈ R

We're going to start off by
assuming that ATM is decidable.

ATM ∈ R

Somehow, we're going to try to
use this to get to a contradiction.

Contradiction!

ATM ∈ R

If we can get a contradiction –
any contradiction – we'll see

that our assumption was wrong.

Contradiction!

ATM ∈ R

The challenge is figuring out
exactly how to go and do this.

Contradiction!

ATM ∈ R

Rather than just jumping all the
way to the end, let's see what
our initial assumption tells us.

Contradiction!

ATM ∈ R

We're assuming that ATM is
decidable. What does that mean?

Contradiction!

ATM ∈ R

Well, a language is decidable if
there's a decider for it, so that

means there's some decider for ATM.
Let's call that decider D.

Contradiction!

There is a decider
D for ATM

ATM ∈ R

What might this decider look like?

Contradiction!

There is a decider
D for ATM

ATM ∈ R

A decider for a language is a
Turing machine with a few key

properties.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

First, it has to always halt.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

That means that if you give it
any input, it has to either accept
or reject it. We'll visualize this
with these two possible outputs.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

Next, the decider has to tell us
something about ATM.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

Next, the decider has to tell us
something about ATM.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a reminder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

ATM ∈ R

Specifically, the decider D needs
to take in an input and tell us
whether that input is in ATM

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a reminder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

ATM ∈ R

ATM is a language of pairs of
TMs and strings, so D will

take in two inputs, a machine
M and a string w.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a reminder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

ATM ∈ R

If D accepts its input, it
means that ⟨M, w is in A⟩ TM.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a reminder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

Yes, M accepts w.

ATM ∈ R

Otherwise, if D rejects its input,
it means that M doesn't accept w.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a reminder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

Yes, M accepts w.

No, M does not accept w.

ATM ∈ R

So now we've got this TM D
lying around. What can we do

with it?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

ATM ∈ R

We've seen the idea that TMs can
run other TMs as subroutines. This
means we can write programs that

use D as a subroutine.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

ATM ∈ R

Since TMs are kinda like programs,
we can imagine that D is a helper

method that looks like this.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

ATM ∈ R

In mathematics, the convention is
to use single-letter variable names
for everything, which isn't good

programming style.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

ATM ∈ R

Here, the method name
(willAccept) is just a fancier and
more descriptive name for D.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept

ATM ∈ R

The two arguments to willAccept
then correspond to the inputs to

the decider D.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

When thinking of D as a decider,
we think of it accepting or

rejecting. In programming-speak,
it's like returning a boolean.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

So at this point we've just set up
the fact that this subroutine exists.
What exactly are we going to do

with it?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

Ultimately, we're trying to get
a contradiction.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

Specifically, we're going to build
a program – which we'll call P –

that has some really broken
behavior... it will accept its input
if and only if it doesn't accept

its input!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

If you're wondering how on earth
you were supposed to figure out
that that's the next step, don't

panic. The first time you see it, it
looks totally crazy. Once you've
done this a few times, you'll

get a lot more comfortable with it.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

Now, we haven't actually written
this program P yet. That's the

next step.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

If you look at what we've said,
right now we have a goal of what
P should do, not how P actually

does that.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

You can think of this requirement
as a sort of “design specification.”

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

Let's actually go write out a spec
for what P needs to do!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:

ATM ∈ R

Since this requirement is an “if and
only if,” we can break it down into

two cases.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:

ATM ∈ R

First, if this program P is supposed
to accept its input, then it needs

to not accept its input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.

ATM ∈ R

Next, if this program P is supposed
to not accept its input, then it

needs to accept its input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

ATM ∈ R

We now have a specification for
what program P is supposed to do.

Let's see how to write it!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

We'll write it in the space
over to the left.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Like most programs, our
program begins execution

in main().

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Our program needs to
get some input, so let's

do that here.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Now, we somehow need to
meet the design spec given

above.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

That means we need to be
able to figure out whether
we're going to accept.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

We've got this handy method
lying around that will let us
know whether any program will

accept any input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What if we had program P ask
whether it was going to accept

something?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Crazy as it seems, that's
something we can actually do!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

First, let's have our program
get its own source code.

(We know this is possible! We
saw how to do it in class.)

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Next, let's call this magic
willAccept method to ask whether
we (program P) are going to

accept our input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Now, let's look back at our
design specification and see what

we need to do.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Our specification says that, if
this program is supposed to

accept its input, then it needs
to not accept its input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What's something we can do to
not accept our input?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

There's a couple of options
here, actually. One of them is

to just go and reject!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So we've taken care of that
part of the design.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What about this part?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This says that if we aren't
supposed to accept the input,
then we should accept the

input.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So let's go add this line to
our program.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

And hey! We're done with this
part of the design spec.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So let's take a quick look over
our program P.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This is what we said that P
was supposed to do.

And hey! That's what it does.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

The whole point of this exercise
was to get a contradiction.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

And, indeed, that's what we've
done! There's a contradiction
here because P accepts if and
only if it doesn't accept.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
implications here...

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
implications here...

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
implications here...

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
implications here...

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

You can see that the starting
assumption that ATM is
decidable leads to a

contradiction – we're done!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Here's that initial lecture
slide again.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Take a look at it more
closely.

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Recognize this code? Now you
know where it comes from!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

We created it to get these
contradictions.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This might seem like a lot – and
in many ways it is.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The key idea here is what's
given over there on the left

column.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

This progression comes up in
all the self-reference proofs

we've done this quarter.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

We'll do another example of
this in a little bit.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Before we move on, though,
I thought I'd take a minute to

talk about a few common
questions we get.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

First, let's jump back to this
part of the program P that

we wrote.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

This is the case where program
P is supposed to accept its

input. We need to program it
so that it doesn't.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Here, the specific way we ended
up doing that was by having
program P reject its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

I mentioned that there were
other things we could do here

as well.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Here's another option. We could
have the program go into an
infinite loop in this case.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The design spec here says that
P needs to not accept in this
case, and indeed, that's what

happens!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

A lot of people ask us whether
this is allowed, since we were
assuming we had a decider
and deciders can't loop.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Turns out, this is totally fine!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

There are two different
programs here.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

First, there's this decider D.
D is a decider, so it's

required to halt on all inputs.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

There's also this program P.
Program P isn't the decider
for ATM, so it's not required

to halt on all inputs.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Going forward, remember that
these proofs involve two

different programs: the decider
for the language, and the
self-referential program.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The decider is always required
to halt, but the program P

is not.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Let's undo all these changes
so that we can talk about
the next common question.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Much better!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

On to the next question.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

A lot of people take a look at
the program we've written...

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

... and ask what happens if we
take these two lines...

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

... and swap them like this.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Usually, people ask whether we
could have just done this and

ended up proving that ATM ∈ R.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Turns out, that doesn't work.
Let's see why.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Notice that this program P
doesn't have the behavior given

over here.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

If you think about the behavior
it does have, it looks more

like this.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Notice that this is a true
statement.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Originally, we got a contradiction
here.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Instead, we've shown that
we end up at a true statement.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

However, take a minute to look
at the giant implication given

here.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Overall, this shows that

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Does this statement say anything
about whether ATM is decidable?

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Nope! Remember, anything
implies a true statement.

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

We have no way of knowing
whether ATM ∈ R or not just
by looking at this statement.

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The fact that we didn't get
a contradiction doesn't mean

that ATM is decidable.
ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Just so we don't get confused,
let's reset everything back to

how it used to be.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Much better!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specification:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Take a look at the general
structure of how we got here.
Then, let's go do another

example.

Do you remember the secure
voting problem from lecture?

We said that a TM M is a
secure voting machine if it

obeys the above rule.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

That's kind of a lot to take
in at once.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Remember – the language of a TM
is the set of all the strings it

accepts.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

So really this statement means that
M accepts every string with more
r's than d's and nothing else.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Our goal was to show that it's
not possible to build a program
that can tell whether an arbitrary
TM is a secure voting machine.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Notice that our goal was not to
show that you can't build a secure

voting machine.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

It's absolutely possible to do
that.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

The hard part is being able to
tell whether an arbitrary program

is a secure voting machine.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

Here's a program where no one
knows whether it's a secure

voting machine.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

You can see this because no one
knows whether this part will

always terminate.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

It's entirely possible that this
goes into an infinite loop on
some input – we're honestly

not sure!

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

So, to recap:
Building a secure voting machine isn't hard.
Checking whether an arbitrary program is a

secure voting machine is really hard.

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

Our goal is to show that the secure voting
problem – the problem of checking whether a

program is a secure voting machine – is
undecidable.

Following our pattern from before, we'll
assume that the secure voting problem is

decidable.

The secure voting
problem is
decidable.

We're ultimately trying to get some kind of
contradiction here.

The secure voting
problem is
decidable.

Contradiction!

As before, we'll take it one step at a time.

The secure voting
problem is
decidable.

Contradiction!

First, since we're assuming that the secure
voting problem is decidable, we're assuming

that there's a decider for it.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

So what does that look like?

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

A decider for the secure voting problem will
take in some TM M, which is the machine

we want to specifically check.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M

The decider will then accept if M is a secure
voting machine and reject otherwise.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

Following our pattern from before, we'll
then say that we can use this decider as a

subroutine in other TMs.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

In software, that decider D might look
something like what's given above.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

Here, isSecure is just another name for the
decider D, but with a more descriptive

name.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure

Its argument (program) is just a more
descriptive name for the TM (program) given

as input.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

This was the point in the previous proof where
we started to write a design spec for some

self-referential program P.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Previously, we wrote P to get this contradiction:
“P accepts if and only if it doesn't accept.”

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

That was a great contradiction to get when
we had a decider that would tell us whether

a program would accept a given input.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

The problem here is that our decider doesn't
do that. Instead, it tells us whether a program

is a secure voting machine.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Following the maxim of “do what you can with
what you have where you are,” we'll try to
set up a contradiction concerning whether a

program is or is not a voting machine.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Specifically, we're going to build a program P
that is a secure voting machine if and only if

it's not a secure voting machine.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Generally speaking, you'll try to set up a
contradiction where the program has the property
given by the decider if and only if it doesn't

have the property given by the decider.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Generally speaking, you'll try to set up a
contradiction where the program has the property
given by the decider if and only if it doesn't

have the property given by the decider.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Pay attention to that other guy! That's
really, really good advice!

So now we have to figure out how to write this
program P.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

As before, let's start by writing out a design
specification for what it's supposed to do.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:

This first part takes care of the first half of
the biconditional.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.

This second part takes care of the other
direction.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

At this point, we have written out a spec
for what we want P to do. All that's left to

do now is to code it up!

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

In lecture, we wrote one particular program
that met these requirements. For the sake of
simplicity, I'm going to write a different one

here. Don't worry! It works just fine.

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Our program starts off in
main().

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Ultimately, we need to figure
out if we're a secure voting

machine or not.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The best tool we have for that
is some kind of self-reference

trick.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

As before, we'll use the fact
 that we have this decider lying
around to make P figure out

what exactly it does.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Specifically, let's have program
P ask what it's going to do.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Let's take it one step at a
time.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Oddly enough, let's look at the
second requirement first.
Why? I ask: why not?

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This requirement says that if
the program is supposed to not
be a secure voting machine,
then it needs to be a secure

voting machine.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This case is the part that
drops us in the “else” branch of
this if statement, so let's focus

on that part for now.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

In this specific case, we're
suppose to make P be a
secure voting machine.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

That means we need to make P
accept all strings with more r's

than d's and not accept
anything else.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The good news is that, a
while back, we already saw

how to do that!

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The code looks something like
this.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Just to confirm that this
works – notice that if the

input has more r's than d's,
we accept it, and otherwise

we reject.

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Okay! So that's one of two
requirements down.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Let's move on to the other
one.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This says that if P is supposed
to be a secure voting

machine, it needs to not be
a secure voting machine.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

There are a lot of ways to get
P to not be a secure voting

machine.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

We can literally do anything
we want except accepting

all strings with more r's than
d's and not accepting

anything else.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Among the many things we can
do that falls into the “literally
anything else” camp would be to

just accept everything.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Notice that in this case, P is
not a secure voting machine:
it accepts everything, including

a ton of strings it's not
supposed to.

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

So we're done with this part
of the design!

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Putting it all together, take a
look at what we accomplished.
This program is a secure voting
machine if and only if it isn't

a secure voting machine!

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

That gives us the contradiction
that we needed to get.

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specification:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

We're done! We've shown
that starting with the assumption
that the secure voting problem

is decidable, we reach a
contradiction.

✓

✓

Let's take a minute to review
the general process that we

followed to get these
results to work.

Let's take a minute to review
the general process that we

followed to get these
results to work.

That other guy is going to tell
you a general pattern to
follow. You might want to

take notes.

Let's suppose that you want
to prove that some language
about TMs is undecidable.

Start off by assuming it's
decidable.

The problem in
question is
decidable

The goal is to get a
contradiction.

The problem in
question is
decidable

Contradiction!

To get there...

The problem in
question is
decidable

Contradiction!

...the first step is to suppose
that you have a decider for
the language in question.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

It's often a good idea to
draw a picture showing what

that decider looks like.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

Think about what the inputs
to the decider are going to
look like. That depends on

the language.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

In the cases we're exploring
in this class, there will always
be at least one input that's

a TM of some sort.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M

Next, think about what the
decider is going to tell you
about those inputs. That

depends on the problem at
hand.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M

For example, if your language
is the set of TMs that have
some property X, then the
decider will tell you whether
the TM has property X.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

The next step is to think about
how to use that decider as

a subroutine in some program.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

Think about what the decider
would look like as a method

in some high-level programming
language.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

You already know what inputs it's
going to take and what it says,
so try to come up with a nice,

descriptive name for the method.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

In this case, since our decider
says whether the program has
some property X, a good name

would be something like
hasPropertyX.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

It doesn't hurt to label the
decider D to show what parts
of the decider correspond

with the method.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

hasPropertyX
program

The next step is to build a
self-referential program that

gives you some sort of
contradiction.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

hasPropertyX
program

You're going to want to
get a contradiction by building a
program that has some property
X if and only if it doesn't have

some property X.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

hasPropertyX
program

Now, you have to figure out
how to write program P.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

hasPropertyX
program

We recommend writing out
a design specification for the
program that you're going to

write.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specification:

hasPropertyX
program

You can fill out that spec by
reasoning about both directions

of the implication.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specification:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

Finally, you have to go and
write a program that gives

you a contradiction.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specification:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

If you follow the design spec,
you'll likely get something like
this. Filling in the blanks takes

some creativity.

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specification:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (hasPropertyX(me)) {
 // do something so you don't
 // have property X.
 } else {
 // Do something so you do
 // have property X.
 }
}

And now you have a
contradiction!

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specification:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (hasPropertyX(me)) {
 // do something so you don't
 // have property X.
 } else {
 // Do something so you do
 // have property X.
 }
}

Hope this helps!

Please feel free to ask
questions if you have them.

Did you find this useful? If
so, let us know! We can go

and make more guides like these.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209

